Вставочные нейроны это определение

Вставочные нейроны это определение

Содержание статьи:

Типы нервных клеток

Вставочные нейроны это определение

08 Января в 21:27 14580 а Биполярные нейроны У этих нейронов один отросток (дендрит), ведущий в тело клетки, и аксон – ведущий из него. Этот тип нейронов в основном находится в сетчатке глаза.


б Однополярные нейроны
Однополярные нейроны (иногда их называют псевдооднополярными) изначально являются биполярными, но в процессе развития их два отростка соединяются в один. Они находятся в нервных узлах (ганглиях), преимущественно в периферической нервной системе, вдоль спинного мозга.

в Мультиполярные нейроны Это самый частый тип нейронов. У них несколько (три или более) отростков (аксонов и дендритов), исходящих от тела клетки, и они находятся во всей центральной нервной системе. Хотя большинство из них имеет один аксон и несколько дендритов, есть и такие, у которых только одни дендриты.

г Промежуточные (вставочные) нейроны Промежуточные (вставочные) нейроны, или ассоциативные нейроны, являются линией связи между сенсорными и двигательными нейронами. Промежуточные нейроны находятся в центральной нервной системе. Они мультиполярные и обычно имеют короткие отростки.

Нейрон Строение Функция
Центростремительные (сенсорные нейроны) Тело клетки находится в ПНС Короткий аксон, ведущий в ЦНС Длинные дендриты (разветвленные отростки) находятся в ПНС Передает сигналы к ЦНС со всего тела
Центробежные (двигательные нейроны) Тело клетки находится в ЦНС Длинный аксон, ведущий в ПНС Короткие дендриты (разветвленные отростки) находятся в ЦНС Отсылают сигналы от ЦНС к телу
Промежуточные нейроны Длинный или короткий аксон, находящийся в ЦНС Короткие дендриты (разветвленные отростки) находятся в ЦНС Передает импульсы между центростремительными и центробежными нейронами

Нейроны (нервные клетки) образуют особую сеть. Самые простые из этих сетей контролируют рефлекторные действия (см. стр. 24-25), которые являются полностью автоматическими и бессознательными. Более сложные сети управляют сознательными движениями.
Нервные пути часто называют нервным током, так как они несут электрический импульс. Импульс обычно появляется в одно- полярном центростремительном нейроне, который соединен с каким-либо рецептором в периферической нервной системе. Импульс передается вдоль аксона клетки в центральную нервную систему (ЦНС). Этот импульс может пройти через один аксон, а может, что более вероятно, через несколько центростремительных нейронов по пути. Центростремительные импульсы обычно попадают в ЦНС в спинном мозге через один из спинномозговых нервов.
Как только импульс попадает в ЦНС, он переходит к другому нейрону. Из электрического импульса, проходящего между клетками, сигналы химическим путем передаются через крошечную щель, называемую синапсом. В самых простых рефлекторных путях центростремительный нейрон переходит к промежуточному нейрону. Затем он переходит к центробежному нейрону, который несет сигнал из ЦНС к эффектору (нервному окончанию) — например, мышце. Более сложные пути включают прохождение импульсов через несколько частей ЦНС. В этом случае импульс передается сначала мультиполярному нейрону. (Большинство нейронов в ЦНС являются мультиполярными.) Отсюда импульс может пройти еще к нескольким мультиполярным нейронам, пока его будут перенаправлять к головному мозгу. Один из этих многополярных нейронов связан с одним или несколькими нервными окончаниями, которые передают ответный импульс через периферическую систему к соответствующему эффектору (мышце).  И.А. Борисова

  • Половые железы и гормоны Половые железы (иногда называемые гонадами) – это яичники у женщин и яички у мужчин. Два яичка расположены внутри мошонки на передней области таза. Их главная функция выработка сперматозоидов, которые выделяются через пенис. Мозг и нервная система
  • Типы нервных клеток Нейроны по своей структуре бывают: биполярные нейроны, однополярные нейроны, мультиполярные нейроны, промежуточные (вставочные) нейроны. Мозг и нервная система
  • Функции мозга Левое полушарие головного мозга разделено на несколько областей и долей. Это: двигательная зона коры головного мозга, домоторная область, лобная доля, область моторики речи, слуховая область, височная доля, теменная доля, сенсорная область, зрительная область и затылочная доля. Мозг и нервная система
  • Гипофиз и гипоталамус Гипофиз (а) – это маленькая круглая железа, соединенная с гипоталамусом (б) в головном мозге. Его функции регулируются гипоталамусом. У гипофиза есть две главные доли – задняя (в) и передняя (г). Они соединены узкой промежуточной долей (д), которая синтезирует… Мозг и нервная система
  • Общие сведения о головном мозге Головной мозг – это орган в виде грецкого ореха, защищенный костями черепа и состоящий из огромного количества нервных клеток. Тела этих нервных клеток называют серым веществом, а их волокна – белым. Мозг и нервная система

Источник: https://medbe.ru/materials/mozg-i-nervnaya-sistema/tipy-nervnykh-kletok/

Вставочный нейрон: функции и роль в формировании нейронных сетей :

Вставочные нейроны это определение

Нейрон является специфической, электрически возбудимой клеткой в нервной системе человека и обладает уникальными особенностями.

Его функции заключаются в обработке, хранении и передаче информации. Нейроны характеризуются сложным строением и узкой специализацией. Они также делятся на три вида.

В этой статье подробно описывается вставочный нейрон и его роль в действии центральной нервной системы.

Классификация нейронов

Головной мозг человека насчитывает примерно 65 миллиардов нейронов, которые постоянно взаимодействуют между собой. Эти клетки подразделяются на несколько видов, каждый из которых выполняет свои особенные функции.

Чувствительный нейрон играет роль передатчика информации между органами чувств и центральными отделами человеческой нервной системы. Он воспринимает разнообразные раздражения, которые преобразовывает в нервные импульсы, а далее передает сигнал в головной мозг человека.

Двигательный – посылает импульсы в различные органы и ткани. В основном данный тип задействован в контроле над рефлексами спинного мозга.

За переработку и переключение импульсов отвечает вставочный нейрон.

Обратите внимание

Функции данного типа клеток заключаются в получении и обработке информации от чувствительных и двигательных нейронов, между которыми они находятся.

Более того, вставочные (или промежуточные) нейроны занимают 90 % центральной нервной системы человека, а также в больших количествах находятся во всех сферах головного и спинного мозга.

Строение промежуточных нейронов

Вставочный нейрон состоит из тела, аксона и дендритов. Каждая часть имеет свои специфические функции и отвечает за определенное действие. В его теле содержатся все компоненты, из которых созданы клеточные структуры. Важная роль этой части нейрона заключается в генерировании нервных импульсов и выполнении трофической функции.

Продолговатый отросток, который несет сигнал от тела клетки, называется аксоном. Он делится на два типа: миелиновый и безмиелиновый. На конце аксона находятся различные синапсы. Третья составляющая нейронов – дендриты. Они являются короткими отростками, которые разветвляются в разные стороны.

Их функция заключается в доставке импульсов к телу нейрона, что обеспечивает связь между различными видами нейронов центральной нервной системы.

Сфера воздействия

Что определяет область влияния вставочного нейрона? В первую очередь его собственное строение. В основном у клеток данного типа имеются аксоны, синапсы которых оканчиваются на нейронах этого же центра, что обеспечивает их объединение.

Некоторые промежуточные нейроны активируются другими, из иных центров, а затем доставляют информацию в свой нейронный центр. Такие действия усиливают воздействие сигнала, который повторяется в параллельных путях, тем самым удлиняя срок хранения информационных данных в центре.

В результате место, куда был доставлен сигнал, увеличивает надежность влияния на исполнительную структуру. Иные вставочные нейроны могут получать активацию от соединений двигательных «братьев» из своего центра. Потом они становятся передатчиками информации назад в свой центр, чем создают обратные связи.

Таким образом, вставочный нейрон играет важную роль в образование особых замкнутых сетей, которые продлевают срок хранения информации в нервном центре.

Возбуждающий тип промежуточных нейронов

Вставочные нейроны делятся на два типа: возбуждающие и тормозные. При активации первых облегчается передача данных из одной нейронной группы в другую. Такую задачу выполняют именно «медленные» нейроны, которые имеют способность к длительной активации.

Они передают сигналы на протяжении довольно длительного времени. Параллельно с этими действиями промежуточные нейроны активизируют и своих «быстрых» «коллег». Когда усиливается активность «медленных» нейронов, то уменьшается время реакции «быстрых».

Одновременно с этим последние несколько замедляют работу «медленных».

Тормозной тип промежуточных нейронов

Вставочный нейрон тормозного типа приходит в активное состояние за счет прямых сигналов, которые поступают в их центр или исходят из него. Данное действие происходит путем обратных связей.

Прямое возбуждение данного типа вставочных нейронов является характерным для промежуточных центров чувствительных путей спинного мозга.

А в двигательных центрах коры головного мозга происходит активизация вставочных нейронов благодаря обратным связям.

Роль вставочных нейронов в работе спинного мозга

В работе спинного мозга человека важная роль отводится проводящим путям, которые расположены снаружи от пучков, исполняющих проводниковую функцию. Именно по этим дорожкам и передвигаются импульсы, которые посылает вставочный и чувствительный нейроны.

Сигналы проходят вверх и вниз по этим путям, передавая различную информацию в соответствующие части мозга. Вставочные нейроны спинного мозга находятся в промежуточно-медиальном ядре, которое, в свою очередь, расположено в заднем роге.

Важно

Промежуточные нейроны являются важной передней частью спинно-мозжечкового пути. На обратной стороне рога спинного мозга расположены волокна, состоящие из вставочных нейронов. Они образуют боковой спинно-таламический путь, который выполняет особую функцию.

Он является проводником, то есть передает сигналы о болевых ощущениях и температурной чувствительности сначала в промежуточный мозг, а потом и в саму кору головного мозга.

Дополнительная информация о вставочных нейронах

В нервной системе человека вставочные нейроны выполняют особую и крайне важную функцию. Они связывают между собой различные группы нервных клеток, передают сигнал из головного мозга в спинной.

Хотя именно этот тип является наиболее мелким по размерам. По форме вставочные нейроны напоминают звезду.

Основное количество данных элементов располагается в сером веществе головного мозга, а их отростки не выступают за пределы центральной нервной системы человека.

Источник: https://www.syl.ru/article/294317/vstavochnyiy-neyron-funktsii-i-rol-v-formirovanii-neyronnyih-setey

Структурно-функциональная характеристика нейронов

Вставочные нейроны это определение

Нервная система построена из двух типов клеток: нервных и глиальных, причем число последних в 8-9 раз превышает число нервных. Однако, именно нейроны обеспечивают все многообразие процессов, связанных с передачей и обработкой информации. Нейроны обладают возбудимостью, проводимостью, лабильностью. Некоторые нейроны обладают автоматией.

Нейроны обладают рядом признаков, общих для всех клеток тела (рис. 3.1).

Независимо от своего местонахождения и функций, любой нейрон, как всякая другая клетка, имеет плазматическую мембрану, определяющую границы индивидуальной клетки.

Когда нейрон взаимодействует с другими нейронами, или улавливает изменения в локальной среде, он делает это с помощью мембраны и заключенных в ней молекулярных механизмов.

В центре цитоплазмы находится ядро, в котором содержится генетическая информация, закодированная в химической структуре генов. В соответствие с этой информацией полностью сформированная клетка синтезирует специфические вещества, которые определяют форму, химизм и функцию этой клетки.

Однако, в отличие от большинства других клеток тела, зрелые нейроны не могут делиться. Поэтому генетически обусловленные химические элементы любого нейрона должны обеспечивать сохранение и изменение его функций на протяжении всей его жизни.

В крупных нейронах 1/3-1/4 величины их тела составляет ядро.

Синтез белка осуществляется в рибосомах, которые встраиваются в структуру эндоплазматического ретикулума. Часть эндоплазматического ретикулума (без рибосом) составляет сетчатый аппарат Гольджи, который имеет отношение к синтезу нейромедиаторов и нейромодуляторов.

Окисление глюкозы происходит в митохондриях, которые выполняют функцию энергетических станций клетки. Чем напряжённей деятельность клетки, тем больше в ней митохондрий.

Совет

В нервных клетках они довольно равномерно распределены в цитоплазме, однако могут там перемещаться (например, по аксону к пресинаптической мембране).

Гидролитические ферменты лизосом избавляют клетку от изношенных или разрушающихся цитоплазматических структур, от избытка сделавшихся ненужными мембран. Изношенные или повреждённые органеллы сливаются с лизосомами и перевариваются лизосомальными ферментами.

В нейроплазме содержатся органеллы специального назначения: микротрубочки и микрофиламенты, которые различаются размером и строением. Микрофиламенты представляют внутренний скелет нейроплазмы и расположены в соме. Микротрубочки тянутся вдоль аксона по внутренним полостям от сомы до окончания аксона. По ним распространяются биологически активные вещества.

Нейроны в отличие от других клеток организма, снабжены отростками.

Многочисленные короткие древовидно разветвленные отростки – дендриты служат своеобразными входами нейрона, через которые сигналы поступают в нервную клетку.

Они имеют шероховатую поверхность, создаваемую небольшими утолщениями – шипиками, словно бусинками, нанизанными на дендрит. Благодаря этому увеличивается поверхность нейрона и максимально повышается сбор информации.

Выходом нейрона является отходящий от тела длинный, гладкий отросток – аксон, который передает нервные импульсы дальше другой нервной клетке или рабочему органу. Аксоны многих нейронов покрыты миелиновой оболочкой. Она образована швановскими клетками, многократно (до 10 и более слоев) «обернутыми» подобно изоляционной ленте вокруг ствола аксона.

Однако, муфты швановских клеток, надетые на аксон, не соприкасаются друг с другом. Между ними остаются узкие щели – перехваты Ранвье. Только здесь нервное волокно непосредственно соприкасается с внеклеточной жидкостью.

Поэтому, в нервной системе млекопитающих волна распространяющегося нервного импульса бежит не плавно, а движется скачками (сальтаторно) от одного перехвата к другому, что весьма ускоряет процесс распространения импульса.

Обратите внимание

Некоторые аксоны не имеют миелинового покрытия: в отличие от миелинизированных волокон их называют безмиелиновыми (по другой терминологии миелинизированные и безмиелиновые волокна различают как мякотные и безмякотные). По безмиелиновым волокнам потенциалы действия распространяется медленнее: здесь они не “прыгают”, а “ползут” по всей длине аксона.

В начальной части аксона в месте выхода его из тела клетки находится область «аксонного холмика», но она лишена миелиновой оболочки. Мембрана этой немиелиновой части нейрона обладает высокой возбудимостью. Поэтому ее называют пусковой зоной, так как именно отсюда начинается возбуждение нейрона.

Неподалёку от своих окончаний большинство аксонов разделяется на тонкие коллатеральные ветви или аксонные терминали, которые вступают в контакт с другими клетками, чаще всего с их дендритами, реже – с телом и ещё реже – с аксоном.

Аксоны эфферентных нейронов контактируют с клетками рабочих органов, которыми являются мышцы или железы внешней секреции. Контактная зона между двумя клетками получила название синапс.

В соответствии с этим термином клетка, передающая сигнал, называется пресинаптической, а получающая сигнал – постсинаптической.

В подавляющем большинстве случаев эти клетки анатомически не соединяются и между ними находится синаптическая щель, которая заполнена жидкостью, напоминающей по своему составу плазму крови (особый вариант межклеточных контактов представляют электрические синапсы).

Из-за анатомической разобщённости пресинаптическая клетка может повлиять на постсинапти-ческую только с помощью химического посредника – нейромедиатора. Медиатор должен выделиться из окончания аксона пресинаптической клетки тогда, когда к этому окончанию подойдёт потенциал действия.

Нейроны выделяют три группы веществ: нейромедиаторы, нейромодуляторы, нейротрофины.

Нейромодуляторы – вещества, изменяющие качественные и количественные характеристики синаптического воздействия нейронов (синтез и выделение медиатора, изменение чувствительности мембраны к медиатору).

Нейротрофины – вещества, которые через межклеточные контакты оказывают воздействие на метаболизм соседних нейронов, т.е. формируют трофическую систему.

Классификация нейронов

Важно

В основе современного представления о структуре и функции ЦНС лежит нейронная теория.

I. Классификация нейронов по форме: зернистые, звездчатые, веретенообразные, пирамидные (большие и малые).

II. Классификация нейронов по строению: униполярные, псевдоуниполярные, биполярные и мультиполярные нейроны (рис. 3.2).

Большинство нейронов состоят из тела, нескольких отходящих от него дендритов и одного аксона – мультиполярные нейроны.Нейроны, состоящие из тела, аксона и одного дендрита, называются биполярными.

Униполярными называются нейроны, воспринимающие возбуждение за счёт синапсов, расположенных на теле клетки, и передающие его по единственному отростку – аксону. Существуют нейроны, которые по своей структуре являются униполярными, но функционально они относятся к биполярным клеткам.

От тела этих клеток отходит один отросток (аксон), но его проксимальная часть Т-образно разветвляется на два волокна: афферентное и эфферентное. Такие нейроны называются псевдоуниполярными; они расположены в спинномозговых ганглиях (ганглиях задних корешков) и в чувствительных ганглиях черепно-мозговых нервов.

Уникальность этих клеток заключается в том, что по миелинизированным афферентным отросткам импульсы проходят намного быстрее, чем по обычным дендритам, не покрытым миелиновой оболочкой.

III. Нейроны делятся по физиологическому эффекту на возбуждающие и тормозные. Нейроны «специализирующиеся» на процессах возбуждения, называются возбуждающими, а на процессах торможения – тормозными.

IV. В зависимости от выполняемых функций выделяют нейроны: афферентные, эфферентные, вставочные.

Афферентные (чувствительные, центростремительные, сенсорные) – передают импульсы (информацию) от рецепторов в ЦНС. Тела этих нейронов расположены вне ЦНС – в спинномозговых или черепно-мозговых ганглиях. Афферентный нейрон имеет псевдоуниполярную форму.

Совет

Один из его отростков направляется на периферию, где заканчивается рецептором (аксоноподобный дендрит), а другой – в ЦНС (истинный аксон). К афферентным нейронам также относятся нервные клетки, аксоны которых составляют восходящие пути головного и спинного мозга.

Эфферентные (эффекторные, двигательные) нейроныработают в центробежном режиме, т.е.

они связаны с передачей нисходящих импульсов от вышерасположенных этажей нервной системы к нижерасположенным: от коры к спинному мозгу, или от спинного мозга к рабочим органам (нейроны спинного мозга залегают в передних рогах спинного мозга, а аксоны идут к скелетным мышцам.

Выделяют альфа-мотонейроны, иннервирующие собственно скелетные мышцы, и гамма-мотонейроны, иннервирующие интрафузальные мышечные волокна.

Альфа-мотонейроны – это единственные выходные соматические нейроны спинного мозга; они служат общим конечным путем для всех двигательных рефлексов и программ). Для эфферентных нейронов характерна разветвленная сеть дендритов и один длинный аксон. Количество эфферентных нейронов в 4-5 раз меньше афферентных.

Вставочные (промежуточные, интернейроны, сочетательные, ассоциативные) как правило, более мелкие клетки, осуществляющие связь между различными нейронами (в частности, афферентными и эфферентными). Они передают нервные импульсы в различных направлениях (горизонтальном, вертикальном) по ЦНС.

Благодаря многочисленным разветвлениям аксона промежуточные нейроны могут одновременно возбуждать большое число других нейронов. В ЦНС преобладают промежуточные нейроны (97-99%).

Особое место среди вставочных занимают модуляторные нейроны (самостоятельно не запускают каких-либо реакций, но могут изменять уровень активности нервных центров, модулируя, таким образом, их активность) и секреторные (например, нейроны гипоталамуса и гипофиза).

Из цепи функционально специализированных нейронов строятся рефлекторные дуги: простые (двухнейронные, моносинаптические) и сложные (полисинаптические). Связь между нейронами осуществляется посредством синапсов (чаще химических, реже электрических). Нейрон, передающий информацию через синапс, называется пресинаптическим; получающий информацию нейрон называется постсинаптическим.

V. По локализации нейроны делятся на центральные (их тела расположены в ЦНС) и периферические (их тела расположены вне ЦНС).

Обратите внимание

VI. В зависимости от количества модальностей раздражителя, адекватных для нейрона различают мономодальные (для них характерна только одна модальность раздражителя) и полимодальные (для них характерны две и более модальности).

В зависимости от количества валентностей адекватного раздражителя выделяют моновалентные (клетки-детекторы) и поливалентные нейроны.

Модальность – это совокупность сходных сенсорных ощущений, возникающих при работе одного анализатора. Модальностями являются, например, зрение, слух, вкус.

Валентность – это отдельное качество той или иной модальности (звуки в 1000 и 800 гц – это раздражитель двух разных валентностей одной модальности).

Адекватный раздражитель – раздражитель, к восприятию которого организм (его рецепторы) приспособились в процессе эволюции.

VII. По функциональной (импульсной активности) выделяют нейроны с фоновой импульсной активностью (они в состоянии покоя постоянно возбуждены и посылают импульсы на другие нейроны или рабочий орган) и «молчащие» нейроны (не имеют фоновой импульсной активности, импульсация проявляется при действии раздражителя).

VIII. По медиатору, который выделяется в окончаниях нейрона выделяют холинэргические, адренэргические, серотонинэргические, пепидэргические и пр. Кроме того выделяют нейросекреторные нейроны, отвечают на нервный импульс секрецией гормонов и релейные (проекционные) нейроны – это нейроны сенсорных путей в центральной части проводникового отдела анализатора.

Рекомендуемые страницы:

Воспользуйтесь поиском по сайту:

Источник: https://megalektsii.ru/s35099t1.html

Нейроны головного мозга – строение, классификация и проводящие пути

Вставочные нейроны это определение

Содержание:

Строение нейрона

Каждая структура в организме человека состоит из специфических тканей, присущих органу или системе. В нервной ткани – нейрон (нейроцит, нерв, неврон, нервное волокно).

Что такое нейроны головного мозга? Это структурно-функциональная единица нервной ткани, входящая в состав головного мозга.

Кроме анатомического определения нейрона, существует также функциональное – это возбуждающаяся электрическими импульсами клетка, способная к обработке, хранению и передаче на другие нейроны информации с помощью химических и электрических сигналов.

Строение нервной клетки не так сложно, в сравнении со специфическими клетками прочих тканей, также оно определяет её функцию.

Нейроцит состоит из тела (другое название – сома), и отростков – аксон и дендрит. Каждый элемент неврона выполняет свою функцию. Сома окружена слоем жирной ткани, пропускающая лишь жирорастворимые вещества.

Внутри тела располагается ядро и прочие органеллы: рибосомы, эндоплазматическая сеть и другие.

Кроме собственно нейронов, в головном мозге преобладают следующие клетки, а именно: глиальные клетки. Их часто называют мозговым клеем за их функцию: глия выполняет вспомогательную функцию для нейронов, обеспечивая окружение для них. Глиальная ткань предоставляет возможность нервной ткани регенерации, питания и помогает при создании нервного импульса.

Количество нейронов в головном мозге всегда интересовало исследователей в области нейрофизиологии. Так, численность нервных клеток варьировалось от 14 миллиардов до 100. Последними исследованиями бразильских специалистов выяснилось, что число нейронов составляет в среднем 86 миллиардов клеток.

Отростки

Инструментом в руках нейрона являются отростки, благодаря которым нейрон способен выполнять свою функцию передатчика и хранителя информации. Именно отростки формируют широкую нервную сеть, что позволяет человеческой психике раскрываться во всей ее красе.

Бытует миф, будто умственные способности человека зависят от количества нейронов или от веса головного мозга, но это не так: гениями становятся те люди, у которых поля и подполя мозга сильно развиты (больше в несколько раз).

За счет этого поля, отвечающие за определенные функции, смогут выполнять эти функции креативнее и быстрее.

Важно

Аксон – это длинный отросток нейрона, передающий нервные импульсы от сомы нерва к другим таким же клеткам или органам, иннервируемым определенным участком нервного столба.

Природа наделила позвоночных животных бонусом – миелиновым волокном, в структуре которого находятся шванновские клетки, между которыми располагаются небольшие пустые участки – перехваты Ранвье. По ним, как по лесенке, нервные импульсы перескакивают от одного участка к другому.

Такая структура позволяет в разы ускорить передачу информации (примерно до 100 метров в секунду). Скорость передвижения электрического импульса по волокну, не обладающего миелином, составляет в среднем 2-3 метра в секунду.

Иной вид отростков нервной клетки – дендриты. В отличие от длинного и цельного аксона, дендрит является короткой и разветвленной структурой. Этот отросток не участвует в передачи информации, а только в ее получении.

Так, к телу нейрона возбуждение поступает с помощью коротких веток дендритов. Сложность информации, которую дендрит способен получит, определяется его синапсами (специфические нервные рецепторы), а именно его диаметром поверхности.

Дендриты, благодаря огромному количеству своих шипиков, способны устанавливать сотни тысяч контактов с другими клетками.

Метаболизм в нейроне

Отличительной особенностью нервных клеток является их обмен веществ. Метаболизм в нейроците выделяется своей высокой скоростью и преобладанием аэробных (основанных на кислороде) процессов.

Такая черта клетки объясняется тем, что работа головного мозга чрезвычайно энергоемкая, и его потребность в кислороде велика.

Несмотря на то, что вес мозга составляет всего 2% от веса всего тела, его потребление кислорода составляет примерно 46 мл/мин, а это – 25% от общего потребления организма.

Главным источником энергии для ткани мозга, кроме кислорода, является глюкоза, где она проходит сложные биохимические преобразования. В конечном итоге из сахарных соединений высвобождается большое количество энергии. Таким образом, на вопрос о том, как улучшить нейронные связи головного мозга, можно ответить: употреблять продукты, содержащие соединения глюкозы.

Функции нейрона

Несмотря на относительно не сложное строение, нейрон обладает множеством функций, главные из которых следующие:

  • восприятие раздражения;
  • обработка стимула;
  • передача импульса;
  • формирование ответной реакции.

Функционально нейроны подразделяются на три группы:

Афферентные (чувствительные или сенсорные). Нейроны этой группы воспринимают, перерабатывают и отправляют электрические импульсы к центральной нервной системе. Такие клетки анатомически располагаются вне ЦНС, а в спинномозговых нейронных скоплениях (ганглиях), или таких же скоплениях черепно-мозговых нервов.
Посредники (также эти нейроны, не выходящие за пределы спинного и головного мозга, называются вставочными). Предназначение этих клеток заключается в обеспечении контакта между нейроцитами. Они расположены во всех слоях нервной системы.
Эфферентные (двигательные, моторные). Данная категория нервных клеток отвечает за передачу химических импульсов к иннервируемым органам-исполнителям, обеспечивая их работоспособность и задавая их функциональное состояние.

Кроме этого в нервной системе функционально выделяют еще одну группу – тормозящие (отвечают за торможения возбуждения клеток) нервы. Такие клетки противодействуют распространению электрического потенциала.

Классификация нейронов

Нервные клетки разнообразны как таковые, поэтому нейроны можно классифицировать, отталкиваясь от разных их параметров и атрибутов, а именно:

  • Форма тела. В разных отделах мозга располагаются нейроциты разной формы сомы:
    • звездчатые;
    • веретеновидные;
    • пирамидные (клетки Беца).
  • По количеству отростков:
    • униполярные: имеют один отросток;
    • биполярные: на теле располагаются два отростка;
    • мультиполярные: на соме подобных клеток располагаются три или более отростков.
  • Контактные особенности поверхности нейрона:
    • аксо-соматический. В таком случае аксон контактирует с сомой соседней клетки нервной ткани;
    • аксо-дендритический. Данный тип контакта предполагает соединение аксона и дендрита;
    • аксо-аксональный. Аксон одного нейрона имеет связи с аксоном другой нервной клетки.

Виды нейронов

Для того чтоб осуществлять осознанные движения нужно, чтобы импульс, образовавшийся в двигательных извилинах головного мозга смог достичь необходимых мышц. Таким образом, выделяют следующие виды нейронов: центральный мотонейрон и таковой периферический.

Первый вид нервных клеток берет свое начало у передней центральной извилины, расположенной спереди от самой большой борозды мозга – борозды Роланда, а именно от пирамидных клеток Беца. Далее аксоны центрального нейрона углубляются в полушария и проходят сквозь внутреннюю капсулу мозга.

Периферические же двигательные нейроциты образованы двигательными нейронами передних рогов спинного мозга. Их аксоны достигают различных образований, таких как сплетения, спинномозговые нервные скопления, и, главное – мышц-исполнителей.

Развитие и рост нейронов

Нервная клетка берет свое начало от клетки-предшественницы. Развиваясь, первые начинают отрастать аксоны, дендриты дозревают несколько позже.

Под конец эволюции отростка нейроцита у сомы клетки образуется маленькое уплотнение неправильной формы. Такое образование называется конусом роста. В нем содержатся митохондрии, нейрофиламенты и трубочки.

Постепенно созревают рецепторные системы клетки и расширяются синаптические области нейроцита.

Проводящие пути

Нервная система имеет свои сферы влияния по всему организму. С помощью проводящих волокон осуществляется нервная регуляция систем, органов и тканей. Мозг, благодаря широкой системе проводящих путей, полностью контролирует анатомическое и функциональное состояние всякой структуры организма.

Почки, печень, желудок, мышцы и другие – все это инспектирует головной мозг, тщательно и кропотливо координируя и регулируя каждый миллиметр ткани. А в случае сбоя – корректирует и подбирает подходящую модель поведения.

Таким образом, благодаря проводящим путям организм человека отличается автономностью, саморегуляцией и адаптивностью к внешней среде.

Проводящие пути головного мозга

Проводящий путь – это скопление нервных клеток, функция которых заключается в обмене информации между различными участками тела.

  • Ассоциативные нервные волокна. Эти клетки соединяют между собой различные нервные центры, что располагаются в одном полушарии.
  • Комиссуриальные волокна. Эта группа отвечает за обмен информацией между аналогичными центрами головного мозга.
  • Проекционные нервные волокна. Данная категория волокон сочленяет головной мозг со спинным.
  • Экстероцептивные пути. Они несут электрические импульсы от кожи и других органов чувств к спинному мозгу.
  • Проприоцептивные. Такая группа путей проводят сигналы от сухожилий, мышц, связок и суставов.
  • Интероцептивные проводящие пути. Волокна этого тракта берут начало из внутренних органов, сосудов и кишечных брыжеек.

Взаимодействие с нейромедиаторами

Нейроны разного местонахождения общаются между собой с помощью электрических импульсов химической природы. Так, что же лежит в основе их образования? Существуют так называемые нейромедиаторы (нейротрансмиттеры) – сложные химические соединения.

На поверхности аксона располагается нервный синапс – контактная поверхность. С одной стороны находится пресинаптическая щель, а с другой – постсинаптическая. Между ними находится щель – это и есть синапс.

На пресинаптической части рецептора располагаются мешочки (везикулы), содержащие определенное количество нейромедиаторов (квант).

Совет

Когда импульс подходит к первой части синапса, инициируется сложный биохимический каскадный механизм, в результате которого мешочки с медиаторами вскрываются, и кванты веществ-посредников плавно вытекают в щель.

На этом этапе импульс исчезает, и появляется вновь только тогда, когда нейромедиаторы достигают постсинаптической щели.

Тогда снова активируются биохимические процессы с открытиями ворот для медиаторов и те, действуя на мельчайшие рецепторы, преобразуются в электрический импульс, идущий далее в глубины нервных волокон.

Между тем выделяют разные группы этих самых нейромедиаторов, а именно:

  • Тормозные нейромедиаторы – группа веществ, осуществляющие тормозное действие на возбуждение. К ним относят:
    • гамма-аминомасляную кислоту (ГАМК);
    • глицин.
  • Возбуждающие медиаторы:
    • ацетилхолин;
    • дофамин;
    • серотонин;
    • норадреналин;
    • адреналин.

Восстанавливаются ли нервные клетки

Долгое время считалось, что нейроны не способны к делению.

Однако такое утверждение, согласно современным исследованиям, оказалось ложным: в некоторых отделах мозга происходит процесс нейрогенеза предшественников нейроцитов.

Кроме того, мозговая ткань обладает выдающимися способностями к нейропластичности. Известно множество случаев, когда здоровый участок мозга берет на себя функцию поврежденного.

Многие специалисты в области нейрофизиологии задавались вопросом о том, как восстановить нейроны головного мозга.

Свежими исследованиями американских ученых выяснилось: для своевременной и правильной регенерации нейроцитов не нужно употреблять дорогие препараты.

Для этого необходимо лишь составить верный режим сна и правильно питаться с включением в диету витаминов группы В и низкокалорийной пищи.

В случае если произойдет нарушение нейронных связей головного мозга, те способны восстановиться. Однако существуют серьезные патологии нервных связей и путей, такие как болезнь двигательного нейрона. Тогда необходимо обращаться к специализированной клинической помощи, где врачи-неврологи смогут выяснить причину патологии и составить правильное лечение.

Люди, ранее употреблявшие или употребляющие алкоголь, часто задают вопрос о том, как восстановить нейроны головного мозга после алкоголя. Специалист бы ответил, что для этого необходимо систематично работать над своим здоровьем.

Обратите внимание

В комплекс мероприятий входит сбалансированное питание, регулярное занятие спортом, умственная деятельность, прогулки и путешествия.

Доказано: нейронные связи головного мозга развиваются через изучение и созерцание категорически новой для человека информации.

В условиях перенасыщения лишней информацией, существования рынка фаст-фуда и сидящего образа жизни мозг качественно поддаётся различным повреждениям. Атеросклероз, тромботические образование на сосудах, хронические стрессы, инфекции, – все это – прямая дорога к засорению мозга.

Несмотря на это существуют лекарства, восстанавливающие клетки головного мозга. Основная и популярная группа – ноотропы.

Препараты данной категории стимулируют обмен веществ в нейроцитах, увеличивают стойкость к кислородной недостаточности и оказывают позитивный эффект на различные психические процессы (память, внимание, мышление).

Кроме ноотропов, фармацевтический рынок предлагает препараты, содержащие никотиновую кислоту, укрепляющие стенки сосудов средства и другие. Следует помнить, что восстановление нейронных связей головного мозга при приеме различных препаратов является долгим процессом.

Влияние алкоголя на головной мозг

Алкоголь оказывает негативное влияние на все органы и системы, а особенно – на головной мозг. Этиловый спирт легко проникает сквозь защитные барьеры мозга.

Метаболит алкоголя – ацетальдегид – серьезная угроза для нейронов: алькогольдегидрогеназа (фермент, обрабатывающий алкоголь в печени) в процессе переработки организмом тянет на себя больше количество жидкости, включая воду из мозга.

Важно

Таким образом, алкогольные соединения просто сушат мозг, вытаскивая из него воду, в результате чего структуры мозга атрофируются, и происходит отмирание клеток.

В случае одноразового употребления алкоголя такие процессы обратимы, чего нельзя утверждать о хроническом приеме спиртного, когда, кроме органических изменений, формируются устойчивые патохарактерологические черты алкоголика. Больше подробной информации о том, как происходит «Влияние алкоголя на мозг».

Врачи

Источник: https://sortmozg.com/structure/nejrony-golovnogo-mozga

Нейрон: строение, функции. Виды нейрона. Развитие нейрона

Вставочные нейроны это определение

Нейрон – структурно-функциональная единица нервной системы, представляет собой электрически возбудимую клетку, которая обрабатывает и передает информацию посредством электрических и химических сигналов.

Развитие нейрона.

Нейрон развивается из небольшой клетки-предшественницы, которая перестаёт делиться ещё до того, как выпустит свои отростки. (Однако вопрос о делении нейронов в настоящее время остаётся дискуссионным.) Как правило, первым начинает расти аксон, а дендриты образуются позже.

На конце развивающегося отростка нервной клетки появляется утолщение неправильной формы, которое, видимо, и прокладывает путь через окружающую ткань. Это утолщение называется конусом роста нервной клетки. Он состоит из уплощенной части отростка нервной клетки с множеством тонких шипиков.

Микрошипики имеют толщину от 0,1 до 0,2 мкм и могут достигать 50 мкм в длину, широкая и плоская область конуса роста имеет ширину и длину около 5 мкм, хотя форма её может изменяться. Промежутки между микрошипиками конуса роста покрыты складчатой мембраной.

Микрошипики находятся в постоянном движении — некоторые втягиваются в конус роста, другие удлиняются, отклоняются в разные стороны, прикасаются к субстрату и могут прилипать к нему.

Конус роста заполнен мелкими, иногда соединёнными друг с другом, мембранными пузырьками неправильной формы. Непосредственно под складчатыми участками мембраны и в шипиках находится плотная масса перепутанных актиновых филаментов. Конус роста содержит также митохондрии, микротрубочки и нейрофиламенты, аналогичные имеющимся в теле нейрона.

Вероятно, микротрубочки и нейрофиламенты удлиняются главным образом за счёт добавления вновь синтезированных субъединиц у основания отростка нейрона. Они продвигаются со скоростью около миллиметра в сутки, что соответствует скорости медленного аксонного транспорта в зрелом нейроне.

Поскольку примерно такова и средняя скорость продвижения конуса роста, возможно, что во время роста отростка нейрона в его дальнем конце не происходит ни сборки, ни разрушения микротрубочек и нейрофиламентов. Новый мембранный материал добавляется, видимо, у окончания.

Совет

Конус роста — это область быстрого экзоцитоза и эндоцитоза, о чём свидетельствует множество находящихся здесь пузырьков. Мелкие мембранные пузырьки переносятся по отростку нейрона от тела клетки к конусу роста с потоком быстрого аксонного транспорта.

Мембранный материал, видимо, синтезируется в теле нейрона, переносится к конусу роста в виде пузырьков и включается здесь в плазматическую мембрану путём экзоцитоза, удлиняя таким образом отросток нервной клетки.

Росту аксонов и дендритов обычно предшествует фаза миграции нейронов, когда незрелые нейроны расселяются и находят себе постоянное место.

Нервная клетка — нейрон — является структурной и функциональной единицей нервной системы.

Нейрон — клетка, способная воспринимать раздражение, приходить в состояние возбуждения, вырабатывать нервные импульсы и передавать их другим клеткам.

Нейрон состоит из тела и отростков — коротких, ветвящихся (дендритов) и длинного (аксона). Импульсы всегда движутся по дендритам к клетке, а по аксону — от клетки.

Виды нейронов

Нейроны, передающие импульсы в центральную нервную систему (ЦНС), называются сенсорными или афферентными.

Моторные, или эфферентные, нейроны передают импульсы от ЦНС к эффекторам, например к мышцам. Те и другие нейроны могут связываться между собой с помощью вставочных нейронов (интернейронов).

Последние нейроны еще называются контактными или промежуточ­ными.

В зависимости от числа и рас­положения отростков нейроны делятся на униполярные, биполярные и мультиполярные.

Рис. 33. Схема строения нервной клетки (нейрона): 1 — дендриты; 2 — тело клетки (перикарион); 3 — коллатераль; 4 — обкладочная клетка; 5 — аксон; 6 — ветвление аксона

Строение нейрона

Нервная клетка (нейрон) со­стоит из тела (перикариона) с ядром и нескольких отростков(рис. 33).

Перикарион является метаболическим центром, в кото­ром протекает большинство син­тетических процессов, в частно­сти, синтез ацетилхолина. В теле клетки есть рибосомы, микротру­бочки (нейротрубочки) и другие органоиды. Нейроны формируют­ся из клеток-нейробластов, кото­рые еще не имеют выростов. От тела нервной клетки отходят ци­топлазматические отростки, число которых может быть различным.

Короткие ветвящиеся отростки, проводящие импульсы к телу клетки, называются дендритами.

Тонкие и длинные отростки, прово­дящие импульсы от перикариона к другим клеткам или перифериче­ским органам, называются аксонами.

Когда в процессе формирования нервных клеток из нейробластов происходит отрастание аксонов, спо­собность нервных клеток делиться утрачивается.

Обратите внимание

Концевые участки аксона способны к нейросекреции. Их тонкие веточки со вздутиями на концах соединяются с соседними нейронами в специальных местах — синапсах. Вздутые окончания содержат мел­кие пузырьки, наполненные ацетилхолином, играющим роль нейромедиатора.

Есть в пузырьках и ми­тохондрии (рис. 34). Разветвлен­ные отростки нервных клеток пронизывают весь организм жи­вотного и образуют сложную систему связей. На синапсах возбуждение передается от ней­рона к нейрону или к мышечным клеткам. Материал с сайтаhttp://doklad-referat.

ru

Рис. 34. Синаптическое соединение: 1 — нервные филаменты; 2 — митохондрии; 3 — си­наптические пузырьки; 4 — синаптическая щель

Функции нейронов

Основная функция нейронов — обмен информации (нервными сигналами) между частями тела. Нейроны восприим­чивы к раздражению, т. е.

способны возбуждаться (генерировать возбуждение), проводить возбуждения и, наконец, передавать его дру­гим клеткам (нервным, мышечным, железистым).

По нейронам прохо­дят электрические импульсы, и это делает возможной коммуни­кацию между рецепторами (клетками или органами, воспринимаю­щими раздражение) и эффекторами (тканями или органами, отвечаю­щими на раздражение, например мышцами).

Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:

Источник: https://zdamsam.ru/a2422.html

Типы нейронов. Сенсорные (чувствительные), моторные (двигательные), промежуточные (вставочные) нейроны – Правда о диетах или похудение для чайников

Вставочные нейроны это определение

Вообще, в зависимости возложенных  на нейроны задач и обязанностей, они делятся на три категории:

Сенсорные (чувствительные) нейроны принимают и передают импульсы от рецепторов «в  центр», т.е. центральную нервную систему.

Причем сами рецепторы – это специально обученные клетки органов чувств, мышц, кожи и суставов умеющие обнаруживать физические или химические изменения внутри и снаружи нашего организма, преобразовывать их в импульсы и радостно передавать их сенсорным нейронам. Таким образом, сигналы идут от периферии к центру.

Следующий тип:

Моторные (двигательные) нейроны, которые урча, фырча и бибикая, несут сигналы, выходящие из головного или спинного мозга, к исполнительным органам, коими являются мышцы,  железы и т.д. Ага, значит, сигналы идут от центра к периферии.

Ну а промежуточные (вставочные) нейроны, попросту говоря, являются «удлинителями», т.е. получают сигналы от сенсорных нейронов и посылают эти импульсы дальше к другим промежуточным нейронам, ну или сразу к моторным нейронам.

В общем и целом вот что получается: у сенсорных нейронов дендриты соединены с рецепторами, а аксоны – с другими нейронами (вставочными).

У двигательных нейронов наоборот, дендриты соединены с другими нейронами (вставочными), а аксоны – с каким-нибудь эффектором, т.е. стимулятором сокращения какой-нибудь мышцы или секреции железы.

Ну а, соответственно, у вставочных нейронов и дендриты и аксоны соединяются с другими нейронами.

Получается что самый простой путь, по которому может идти нервный импульс, будет состоять из трех нейронов: одного сенсорного, одного вставочного и одного моторного.

Важно

Ага, а давайте теперь  вспомним дядьку – очень «нервного патолога», с ехидной улыбкой стучащего своим «волшебным» молоточком по колену.

Знакомо? Вот, это и есть простейший рефлекс: когда он ударяет по коленному сухожилию, прикрепленная к нему мышца растягивается и сигнал от находящихся в ней чувствительных клеток (рецепторов) передается по сенсорным нейронам в спинной мозг.

А уже в нем сенсорные нейроны контактируют либо через вставочные, либо  непосредственно с моторными нейронами, которые в ответ посылают импульсы назад в ту же самую мышцу, заставляя ее сокращаться, а ногу –  распрямляться.

Сам же спинной мозг удобно примостился  внутри нашего позвоночника. Он мягкий и ранимый, потому и прячется в позвонках.

Спинной мозг всего 40-45 сантиметров в длину, с мизинец толщиной (около 8 мм) и весит каких-то 30 грамм! Но, несмотря на всю свою тщедушность, спинной мозг  является управляющим центром сложной сети нервов, раскинутой по телу.

Практически как центр управлениями полетами! 🙂  Без него ни опорно-двигательный аппарат, ни основные жизненные органы ну никак не могут действовать и работать.

Свое начало спинной мозг берет на уровне края затылочного отверстия черепа,  а заканчивается на уровне первого-второго поясничных позвонков.

А вот уже ниже спинного мозга в позвоночном канале находится такой густой пучок нервных корешков, прикольно именуемый конским хвостом, видимо за сходство с ним. Так вот, конский хвост – это продолжение нервов, выходящих из спинного мозга.

Совет

Они отвечают за иннервацию нижних конечностей и органов таза, т.е. передают сигналы от спинного мозга к ним.

Спинной мозг окружен тремя оболочками: мягкой, паутинной и твердой. А пространство между мягкой и паутинной оболочками заполнено еще и большим количеством спинномозговой жидкости.  Через межпозвоночные отверстия от спинного мозга отходят спинномозговые нервы: 8 пар шейных, 12 грудных, 5 поясничных, 5 крестцовых и 1 или 2 копчиковых.

Почему пар? Да потому, что спинномозговой нерв выходит двумя корешками: задним (чувствительным) и передним (двигательным), соединенными в один ствол. Так вот, каждая такая пара контролирует определенную часть тела. Т.е.

, например, если вы нечаянно схватились за горячую кастрюлю (не дай бог! Тьфу-тьфу-тьфу!), то в окончаниях чувствительного нерва тут же возникает болевой сигнал, сразу же поступающий в спинной мозг, и уже оттуда – в парный двигательный нерв, который и передает приказ: «Ахтунг-ахтунг! Немедленно убрать руку!» Причем, поверьте, это происходит очень быстро – еще до того, как головной мозг зарегистрирует болевой импульс. В итоге, вы успеваете отдернуть руку от кастрюли еще до того, как почувствуете боль. Конечно же, такая реакция спасает нас от тяжелых ожогов или других повреждений.

Вообще, практически все наши автоматические и рефлекторные действия контролируются спинным мозгом, ну за исключением тех, за которыми следит сам головной мозг.

Ну, вот, например: мы воспринимаем увиденное с помощью глазного нерва идущего в головной мозг, и в то же время обращаем свой взор в разные стороны при помощи глазных мышц, которые управляются уже спинным мозгом.

Да и плачем мы то же по приказу спинного мозга, который «заведует» слезными железами.

Можно сказать, что наши сознательные действия идут от головного мозга, но как только эти действия мы начинаем выполнять уже автоматически и рефлекторно – они передаются в ведение спинного мозга.

Так что, когда мы только учимся что-то делать, то, конечно же, сознательно обдумываем и продумываем и осмысливаем каждое движение, а значит, используем головной мозг, но со временем мы уже можем делать это автоматически, и это значит, что головной мозг передает «бразды правления» этим действием спинному, просто ему уже стало скучно и неинтересно….потому как, наш головной мозг очень пытливый, любознательный и любит учиться!

Ну вот, пришло и нам время полюбопытствовать……

Читаем про головной могз! >>

Источник: http://www.hudeika.ru/nervnaya_sis3.html



Источник: psyhologvsochi.ru


Добавить комментарий