Региональное кровообращение это

Региональное кровообращение это

— движение крови в капиллярах и прилегающих к ним микрососудах (микрогемодинамика),

— движение жидкости и растворенных в ней в-в в интерстициальном пространстве.

— движение лимфы в начальных отделах лимфатической системы.

Микроциркуляторное русло — комплекс сосудов, являющийся связующим звеном между приносящей в орган кровь артериолой и отводящей от органа кровь венулой.

— артериолы — резистивная ф-я.

— прекапиллярные артериолы — являются распределителями капиллярного кровотока.

— кровеносные капилляры — обменная ф-я.

— посткапиллярные венулы — обеспечивают отток крови.

— венулы — емкостная ф-я.

— артериоло-венулярные анастомозы — обеспечивают шунтирующую ф-ю.

— лимфатические капилляры — обеспечивают резорбцию растворов пит. в-в, электролитов и избытка жидкости из интерстиц. пространства.

б) гемодинамические основы регионарного кровообращения.

Движущей силой кровотока является градиент кровяного давления между артериальным и венозным отделами сосудистого русла. Градиент обеспечивает однонаправленность кровотока. Интенсивность кровоснабжения органа характеризуется объемной скоростью кровотока: Q=дельтаР/R. Величина гидродинамического сопротивления подчиняется з-ну Хагена-Пуазейля: R=8gl/пr4.

в) факторы, определяющие интенсивность кровоснабжения органов. ??????????

г) хар-ка функциональной гиперемии, постокклюзионной гиперемии и ауторегуляции кровотока в органах.

Ауторегуляция — обеспечение независимости кровоснабжения органа от изменений АД и ВД. В основе ауторегуляции кровотока в органе лежит спос-ть ГМК сосудов органа увеличивать свою сократительную активность при увеличении перфузионного давления. Главная роль в осущ-ии ауторегуляции принадлежит миогенному механизму регуляции.

Функциональная гиперемия — увеличение интенсивности кровоснабжения активно работающего органа или его участка. Ведущая роль в развитии функ. гиперемии отводится метаболическому фактору регуляции тонуса.

Реактивная гиперемия — увеличение кровоснабжения органа после временного ограничения или прекращения кровотока в нем. Чаще всего наблюдается вследствие окклюзии сосудов. Развивающийся при этом дефицит О2, накопление СО2, продуктов анаэробного гликолиза приводят к вазадилатации.

Билет 2

1)Физиология спинного мозга

а) функциональная класс-я нейронов с.м., их афферентные и эфферентные связи

закон Белла—Мажанди: задние корешки являются афферентными, чувств., центростремительными, а передние — эфферентными, двиг., центробежными. Функционально нейроны с.м. можно разделить:

1) мотонейроны (двигательные) — клетки передних рогов, аксоны которых образуют передние корешки;

2) интернейроны — нейроны, получающие информацию от спинальных ганглиев и располагающиеся в задних рогах. Эти нейроны реагируют на болевые, температурные, тактильные, вибрационные, проприоцептивные раздражения;

3) симпатические, парасимп. нейроны расположены преимущественно в боковых рогах. Аксоны этих нейронов выходят из с.м. в составе передних корешков;

4) ассоциативные клетки — нейроны собственного аппарата с.м., устанавливающие связи внутри и между сегментами.

Афферентные входы в с.м. организованы аксонами спинальных ганглиев, лежащих вне с.м., и аксонами экстра- и интрамуральных ганглиев симпатического и парасимп. отделов АНС: 1ая группа афферентных входов с.м. образована чувств. волокнами, идущими от мышечных рецепторов, рецепторов сухожилий, надкостницы, оболочек суставов — начало проприоцептивной чувствительности. 2ая группа афферентных входов с.м. начинается от кожных рецепторов: болевых, температурных, тактильных, давления — кожная рецептирующая система. 3я группа афферентных входов с.м. представлена рецептирующими входами от висцеральных органов — висцерорецептивная система. Эфферентные (двигательные) нейроны расположены в передних рогах с.м., и их волокна иннервируют всю скелетную мускулатуру.

б) класс-я спинальных рефлексов

Миотатические рефлексы — рефлексы на растяжение мышцы. Быстрое растяжение мышцы, всего на несколько мм механическим ударом по ее сухожилию приводит к сокращению всей мышцы и двигательной реакции.

Висцеромоторные рефлексы возникают при стимуляции афферентных нервов внутренних органов и характеризуются появлением двигательных реакций мышц грудной клетки и брюшной стенки, мышц разгибателей спины.

Рефлексы АНС имеют свои пути. Они начинаются от различных рецепторов, входят в с.м. через задние корешки, задние рога, далее в боковые рога, нейроны которых через передний корешок посылают аксоны не непосредственно к органам, а к ганглию симпатического или парасимп. отдела АНС.

Сложной формой рефлекторной деятельности с.м. является рефлекс, реализующий произвольное движение. В основе реализации произвольного движения лежит гамма-афферентная рефлекторная система. В нее входят пирамидная кора, экстрапирамидная система, альфа- и гамма-мотонейроны с.м., экстра- и интрафузальные волокна мышечного веретена.

в) ф-ии альфа- и гамма-мотонейронов с.м.

Мотонейроны спинного мозга функционально делят на альфа- и гамма-нейроны.

Альфа-мотонейроны образуют прямые связи с чувствительными путями, идущими от экстрафузальных волокон мышечного веретена, Гамма-мотонейроны, иннервирующие интрафузальные мышечные волокна мышечного веретена, получают информацию о его состоянии через промежуточные нейроны. Сокращение интрафузального мышечного волокна не приводит к сокращению мышцы, но повышает частоту разрядов импульсов, идущих от рецепторов волокна в спинной мозг. Эти нейроны обладают высокой частотой импульсации (до 200 в сек).

г) функциональные основы развития спинального шока

После полного пересечения с.м. возникает спинальный шок. Это явление заключается в том, что все центры ниже перерезки перестают организовывать присущие им рефлексы. Нарушение рефлекторной деятельности после пересечения с.м. у разных животных длится разное время. У лягушек — десятки секунд, у кролика — 10—15 мин, у собак — несколько часов, дней. У обезьян — несколько суток; у человека — несколько недель, а то и месяцев. Т.е., чем сложнее организация ЦНС у животного, тем сильнее контроль вышележащих отделов мозга над нижележащими. То, что причиной шока является нарушение супраспинальных влияний, доказывается повторной перерезкой с.м. ниже места первой перерезки. В этом случае спинальный шок не возникает, рефлекторная деятельность с.м. сохраняется. По истечении длительного периода времени после шока спинальные рефлексы резко усиливаются, что объясняется устранением тормозного влияния ретикулярной формации ствола мозга на рефлексы спинного мозга.



Источник: studfile.net


Добавить комментарий